

Feb 19-8:47 AM

Binomial Prob. dist
Binomial Prob. dist
1) n independent events
2)
$$P(Success)=p$$
, $P(Failure)=q$
 $P+q=1$, $q=1-P$
 $P \gtrless q$ do not change Sor different events
3) $x - P$ # of Successes, $n - x - P$ # of failures
 $P(x) = n^{C} x \cdot P^{X} \cdot q^{N-X}$
ex: flip a Voin 100 times. $N = 100$
Success is to land tails $P=.5$, $q=.5$
 $P(land exactly 55 tails)$ x
 $P(x = 55) = 100^{C} 55 \cdot (.5) \cdot (.5) = .048$
 $P(x = 55) = 100^{C} 55 \cdot (.5) \cdot (.5) = .048$

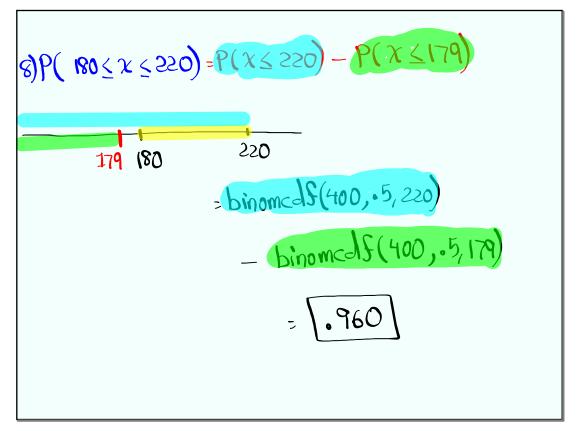
Apr 2-1:47 PM

You are taking multiple choice exam with
20 questions.
Each question has 4 choices but only one
correct choice
$$n=20$$

You are making random guesses. $p=\frac{1}{4}=.25$
P(corretly guess 8 correct answers)=
 $P(x=8)=20$ $(.25) \cdot (.75)=...24$
 $P(x=8)=20$ $(.25) \cdot (.75)=...461$
 $P(x=8)=100$ $P(x=8)=100$

Apr 2-1:56 PM

A quiz has 20 True-Salse Puestions.
You are making random guesses. P=.5
P(exactly 12 Correct ans)
P(x=12) = binompols(20, .5, 12) = (.120)
P(at most 12 Correct ans)
P(
$$x \le 12$$
) = binomcdf(20, .5, 12) = .868
P(atlenst 12 Correct ans)=
Total Prob.
P($x \ge 12$) = 1 - P($x \le 11$)
We don't we want
Want 11 12
= 1 - binomcdf(20, .5, 11)= .252


Consider a binomial Prob. dist with
$$n=400$$

and $p=.8$.
 $1)q=1-p=1.2$ 2) $np=400(.8)=320$ 3) $npq=$
 $400(.8)(.2)=64$
 $4)\sqrt{npq}=\sqrt{64}=18$
 $5) P(x=310)=binompds(400,.8,310)=.022$
 $6) P(x<310)=P(x\leq309)$
 $= binomcds(400,.8,309)\approx.096$
 $1) P(x>310)=P(x\geq314)=1-P(x\leq310)$
We don't we want Total Prob.
Want 310 311
 $=1-binomcds(400,.8,310)$
 $= .882$

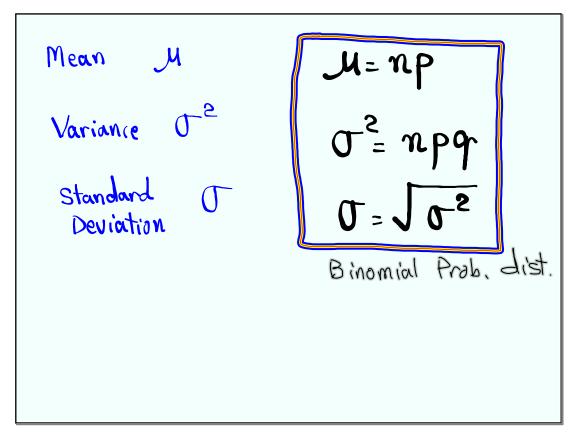
Г

Apr 2-2:15 PM

Consider a binomial prob. dist. With
$$\eta = 400$$

and $P = .5$
 $19 = 1 - P$ 2) $\pi p = 400(.5)$ 3) $\pi pq = 400(.5)(.5)$
 $= .5$ $= 200$ $= 100$
4) $\sqrt{\pi pq} = \sqrt{100} = .100$
5) $P(x = 205) = binom pdf(400, .5, 205) = .035$
6) $P(x \le 220) = binom cdf(400, .5, 220) = .950$
7) $P(x \ge 200) = 1 - P(x \le 199)$
we don't we wont $= 1 - binom cdf(400, .5, 199)$
 $we don't we wont $= 1 - binom cdf(400, .5, 199)$
 $want (9, 200) = .520$$

Apr 2-2:26 PM



Apr 2-2:36 PM

You are taking an exam with 100 questions.
Each question has 5 choices but only
one correct choice.
Making random guesses.
1)
$$n = 100$$
 2) $p = \frac{1}{5} = \cdot 2$ 3) $q = \frac{4}{5} = \cdot 8$
4) $np = 100(\cdot 2)$ 5) $npq = 100(\cdot 2)(s)$ 6) $Jnpq = J16$
 $= 160$ $= 16$ $= 14$
7) $P($ guess exactly 25 correct answers)
 $P(x = 25) = binompdS(100, \cdot 2, 25) = \cdot .044$
8) $P($ guess fewer than 25 correct answers)
 $P(x < 25) = P(x \le 24)$
 $= binomcdS(100, \cdot 2, 24) = \cdot .869$

9) P(guess at least 15 Correct answers) $P(x \ge 15) = 1 - binomed S(100, .2, 14) = [.920]$ 10) P(guess between 12 and 28 correct cunsulers, inclusive) P($12 < \chi \leq 28$) = binomcols(100, .2, 28) - binomcdf(100,.2,11) 28 112 .967 5

Apr 2-2:53 PM

100 Newborn babies are randomly selected
Success is to have a boy.
1)
$$\pi = 100$$
 2) $P = .5$ 3) $q = .5$
4) $M = \pi p = 50$ 5) $U^2 = \pi p q = 25$ 6) $U = J U^2 = J = 5$
1) $65/.$ Range $\Rightarrow J U \pm 0 = 50 \pm 5 = 10^{-2} + 5 = 5$
8) USUAL Range $\Rightarrow J U \pm 0 = 50 \pm 5 = 10^{-2} + 5 = 5$
8) USUAL Range $\Rightarrow J U \pm 0 = 50 \pm 2(5) = 10^{-2} + 5 = 5$
9) USUAL Range $\Rightarrow J U \pm 0 = 50 \pm 2(5) = 10^{-2} + 5 = 5$
9) USUAL Range $\Rightarrow J U \pm 0 = 50 \pm 5 = 10^{-2} + 5 = 5 = 10^{-2} + 10^{-2} + 10$

Apr 2-3:03 PM

I Slipped a loaded coin 60 times.
Success is to land tails.

$$P(Tails) = .4$$

 $P(Tails) = .4$
 $P(Tails) =$

٦

Consider a binomial prob. dist. with

$$n = 45$$
 $\dot{\epsilon}$, $p = \frac{1}{3}$.
 $1) q = 1 - p = \frac{2}{3}$ $2) \mu = np = 45(\frac{1}{3})$ $3) 0 = npq$
 $= 15$ $= 45(\frac{1}{3})(\frac{2}{3})$
 $4) \sigma = J\sigma^2 = J\sigma \approx 3$ $= 15$
 $= 10$
 $5) qq.7$, Range $\mu \pm 3\sigma = 15 \pm 3(3)$
 $= 6 \ to \ 24$
 $10) P(6 \le \chi \le 24) =$
binom $\le 5(45, \frac{1}{3}, \frac{2}{3}) - binom (dS(45, \frac{1}{3}, 5))$
 $= .998 \approx 99.8$

Г

Apr 2-3:29 PM

9)
$$P(\# oS \pm uils is between 16 \pm 24, indusive)$$

 $X = 16 \le x \le 24$
 $P(16 \le x \le 24) = binomedS(60, .4, 24) - binomedS(60, .4, 15)$
 $15 \pm 6 = 24$
 $e = 5.45$
 $10) P(\# \pm uils is between 20 \le 28, inclusive)$
 $P(20 \le x \le 28)$
 $= binomedS(60, .4, 28) - binomedS(60, .4, 19)$
 $= .765$